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Context: Quality assurance of business process models has been recognized as an important factor for
modeling success at an enterprise level. Since quality of models might be subject to different interpreta-
tions, it should be addressed in the most objective way, by the application of measures. That said, how-
ever, assessment of measurement results is not a straightforward task: it requires the identification of
relevant threshold values, which are able to distinguish different levels of process model quality.
Objective: Since there is no consensual technique for obtaining these values, this paper proposes the def-
inition of thresholds for gateway complexity measures based on the application of statistical techniques
on empirical data.
Method: To this end, we conducted a controlled experiment that evaluates quality characteristics of
understandability and modifiability of process models in two different runs. The thresholds obtained
were validated in a replication of the experiment.
Results: The thresholds for gateway complexity measures are instrumental as guidelines for novice mod-
elers. A tool for supporting business process model measurement and improvement is described, based
on the automatic application of measurement, and assessment as well as derivation of advice about
how to improve the quality of the model.
Conclusion: It is concluded that thresholds classified business process models in the specific level of
understandability and modifiability, so these thresholds were good and useful for decision-making.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In an organizational setting, measurement of business process
(BP) models plays an important role in obtaining useful informa-
tion on the direction of potential improvement [39]. Designing
business process models in a way that is readily understandable
is a prerequisite for the leveraging of the benefits of process
improvement, as well as being crucial in the corresponding design
of information systems. Process models that are difficult to under-
stand often contain errors such as deadlocks [30]. Good process
model design can help to avoid errors right from the start. This is
critical, since the propagation of errors to later stages implies expo-
nentially-growing rework costs and efforts [52]: post-implementa-
tion errors cost more than 100 times as much as errors produced
during the design stage [7].

Measurement of structural properties can be used to indicate
that a model is likely to be understood well, or that it is potentially
prone to errors. Complexity of business processes can be faced
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from different perspectives, because they are a high-level notion,
made up of many different elements (splits, joins, resources, data,
etc.) [14]. To support business process model evaluation, several
structural measures have been published to date [47], most of
them focused on evaluating size or complexity. These measures
can be used to evaluate static properties of process models, or, in
other words, their internal quality. Typically, the significance of
structural measures such as internal quality factors relies on a
thorough empirical validation of their correlation with external
quality attributes [56], which focus on the user perceptions [26].
These considerations stem from Software Engineering research
and can be applied to business process modeling, owing to the sim-
ilarities between BPs and Software [38].

Up until now, however, there are no empirically-validated
thresholds available that facilitate the decision-making process re-
lated to the quality of business process models. Henderson-Sellers
emphasizes their practical utility in the Software Engineering field
by stating that ‘‘an alarm would occur whenever the value of a spe-
cific internal measure exceeded some predetermined value’’ [23].
Having such thresholds available is therefore highly desirable.

In this paper we focus on gateway complexity, because gateways
are of central importance to the correctness of process models. As
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stated by Cant et al. ‘‘a conditional control structure is more complex
to understand than a normal sequential section of code’’ [10], so it can
be expected that gateway complexity greatly influences the overall
complexity. Gateways define routing constraints using decision nodes,
parallel execution or synchronization of the control flow. The struc-
tural measures considered in this paper related to gateway complexity
are: Control-Flow Complexity (CFC), Gateway Mismatch (GM), Gate-
way Heterogeneity (GH), Average Gateway Degree (AGD), Maximum
Gateway Degree (MGD) and Total Number of Gateways, (TNG). With
regards to external quality, this paper concentrates on two of the most
relevant characteristics: understandability and modifiability. The
selection of understandability and modifiability is based on the impor-
tance of maintaining a good level of these characteristics in business
process models, in order to adapt to the continuous changes needed
to meet user requirements. A lack of understanding of process models
affects modifiability tasks, which in turn directly affects the maintain-
ability of process models [25]. Furthermore, since a process model in
the design stage is concerned with requirement documentation and
communication [17], these quality characteristics become very impor-
tant in achieving successful implementation. It has been demon-
strated in previous work that gateway measures are correlated with
understandability and modifiability [46].

Based on the issues outlined above, the research question is to
ask if it is possible to automatically distinguish between under-
standable/modifiable models and non-understandable/non-modi-
fiable ones, by measurement of structural properties related to
gateway complexity. This article provides a twofold contribution
in the context described in the preceding paragraphs.

� We identify threshold values for the set of structural measures
selected. To this end, we conducted a controlled experiment
involving understanding and modification tasks, the results of
which are validated in a replication. As a complementary mech-
anism to facilitate the decision making process, we also propose
the Gateway Complexity Indicator (GCI), which is defined based
on the threshold values that were previously identified for the
chosen gateway complexity measures.
� We present a tool for automatic support of the measurement

assessment, as a proof-of-concept implementation. This tool
applies a group of measures (gateway complexity measures and
others) on business process models and highlights whether mea-
sures remain in the desirable range or not. If a threshold value is
exceeded, the tool gives recommendations about what parts or ele-
ments of the business process model should be redesigned.

The remainder of this article is organized as follows. Section 2
provides an introduction to gateway complexity, along with tech-
niques for threshold extraction found in literature. Section 3 ex-
plains the planning and operation of the experiment. In section
4, there is a description of how the thresholds were obtained
by the application of statistical techniques on experimental data,
and then the GCI indicator is defined. In Section 5, we validate
our results using an experiment replication, by calculating preci-
sion, recall and accuracy measures and ROC (receiver operating
characteristic) curves. Section 6 discusses the findings of this
work, as well as its implications as regards the definition of mod-
eling guidelines and recommendations. In Section 7, the tool for
measurement assessment is described, with a highlight on its
practical utility. Section 8 provides conclusions of this piece of re-
search, as well as an outlook on future research.
2. Background

This section discusses the background to our research. Firstly,
we introduce the evaluation of business process models
quality, with a focus on gateways. Secondly, we summarize dif-
ferent techniques for extracting thresholds, as found in
literature.

2.1. Gateway complexity of business process models

The control flow of business process models is defined using
gateways, essentially. The complexity of a gateway relates to its
type (XOR, AND, and OR) and to whether it is a split or a join. Splits
define the decision points and points where concurrent execution
is triggered, while joins specify the conditions of how paths are
merged or synchronized [12]. The key idea behind the gateway
complexity is to evaluate the number of mental states that have
to be considered when a designer is modeling a process. Miller
[34] highlighted the importance of mental states, since the mind’s
capacity to analyze a model would be reduced when the number of
mental states becomes too big, resulting in more errors when
modeling.

Split nodes are the main elements to be considered in gateway
complexity. There are a number of specific aspects that are taken
into account by different measures. These include the number of
inputs and outputs, the mismatch between splits and joins and
the number of decision nodes of different types in a model. That
being the case, the set of measures selected in this research is
the following:

� Control-flow complexity (CFC) was defined by Cardoso [13] to
measure the complexity of split gateways based on the number
of mental states that have to be taken into account when a
designer models a process.
� Gateway mismatch (GM) was defined by Mendling [30] as

the sum of gateway pairs that do not match with each
other, for example, when an AND-split is followed by an
OR-join.
� Gateway heterogeneity (GH) was defined by Mendling [30] to

quantify the frequency of different types of gateways used in
a model.
� Average gateway degree (AGD) is a measure [30] to express the

average number of both incoming and outgoing arcs of the gate-
way nodes in the model.
� Maximum gateway degree (MGD) [30] is the maximum number

of incoming and outgoing arcs of a decision node in the model.
� Total Number of gateways (TNG) defined by Rolón et al. [43] is

the number of decision nodes in the model.

Fig. 1 shows an example of a business process model expressed
in BPMN [37] and includes the value of measures in the upper-
right corner. The calculation of these measures is specified in
Eqs. (1)–(5). For the measure TNG, there is no need for an explicit
equation, since it is a base measure. It is determined by counting
the number of decision nodes in the model.

CFCðPÞ ¼
X

i2½AND-spilits of p�
CFCAND-spilitðiÞ

þ
X

j2½XOR-spilits of p�
CFCXOR-spilitðjÞ

þ
X

k2½OR-spilits of p�
CFCOR-spilitðkÞ

¼ 1þ fan-outðjÞ þ 2fan-outðkÞ � 1 ¼ 1þ ð3þ 2Þ þ 3 ¼ 9 ð1Þ

GMðPÞ ¼ GMXOR þ GMOR þ GMAND ¼ 2þ 2þ 0 ¼ 4 ð2Þ

in which GMl ¼
P

c2SldðcÞ �
P

c2Jl
dðcÞ

���
��� where l is the decision node

type, S and J means splits and joins and d is the degree of the deci-
sion node



Fig. 1. Example of calculation of measures.
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GHðPÞ ¼ �
X

t2ðAND;XOR;ORÞ

Ct
C
� loga

Ct
C
¼ �0:33� 0:31� 0:27 ð3Þ

where Ct is total number of a specific type of decision node and C
total number of decision nodes

AGDðPÞ ¼ 1
C

X

C2decision nodes of P

dðcÞ ¼ 1
6
ð3þ 4þ 4þ 3þ 6þ 5Þ

¼ 4:17 ð4Þ

where d(c) is degree of each decision node, which means number of
input/outputs

MGDðPÞ ¼ MAXdðcÞc2decision nodes of P ¼ 6 ð5Þ
2.2. Related work on thresholds for business process measures

The extraction of thresholds is no trivial task. It requires a the-
ory and practical base and it should meet certain requirements. It
ought [1]: a) not to be based on expert opinion but on measure-
ment data; b) to respect the statistical properties of the measure,
such as metric scale and distribution and to be resilient against
outlier values; and c) to be repeatable, transparent and easy to car-
ry out. Some authors have defined thresholds based on experience.
Table 1
Different threshold initiatives found in literature.

Author Measure Technique

Erni and
Lewerentz
[18]

Software measures: Class and method
complexity, coupling, cohesion

Mean and standard

French [21] Software measures Mean and standard
additionally the Ch
theorem

Shatnawi [49] Chidamber and Kemerer measures Bender method [5

Sanchez-
Gonzalez
et al. [46,48]

Business Process measures Bender method [5

Shatnawi [50] Chidamber and Kemerer measures ROC curves

Catal et al.[15] Software measures ROC curves

Benlarbi [6] Chidamber and Kemerer Linear regression

Yoon et al. [55] Software measures K-means cluster al

Herbold et al.
[24]

Control flow structuredness, coupling, size,
method complexity, inheritance, staticness

Machine learning b

Ferreira et al.
[20]

Object-oriented software measures The values found m

Rosenberg [44] Object-oriented software measures Histogram analysis
A typical example is the value 10 for the McCabe’s cyclomatic com-
plexity measure [29]. This value relies on experience and some-
times it is difficult to defend in an objective manner. This
problem of objectivity has led to different proposals which all
aim to provide a theoretical foundation. The methods being used
typically build on statistics such as mean and standard deviation
or ROC curves. However, these statistical techniques have some
weaknesses, as is summarized in Table 1.

Erni and Lewerentz [18] define a maximum and minimum
threshold, based on calculations with the mean and standard devi-
ation of data. They calculate the minimum threshold by subtracting
the standard deviation of the mean and the maximum threshold is
calculated by adding it. However, a requirement prior to obtaining
valid thresholds with this method is that the measures analyzed
have to follow a normal distribution, which is considered as an
important limitation. French [21] also proposes a technique for
threshold extracting, based on mean and standard deviation, but
using in addition the Chebyshev’s inequality theorem, in order to
avoid the normality restriction. The main limitation of this method-
ology is that for measures with high range or high variation, it will
identify a smaller percentage of observations than its theoretical
maximum. Other authors, Shatnawi [49] and Sanchez-Gonzalez
et al.[46,48], use the Bender method [5], which comes from epide-
miological studies and is based upon the logistic regression model,
Weaknesses

deviation Data must follow a normal distribution

deviation but using
ebyshev’s inequality

This methodology is sensitive to a large number of
outliers

] A binary variable is needed and the definition of p0

variable is arbitrary
]

This methodology does not succeed in deriving
monotonic thresholds
The maximum value of sensitivity/specificity
sometimes does not exist
There is no empirical evidence supporting the
model

gorithm It requires an input parameter that affects both the
performance and the accuracy of the results

ased method The methodology produces only a binary
classification

ost commonly in practice The effectiveness of the method depends on the
sample size
There is no clear evidence of how these values are
associated with error-probability.
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which requires a binary variable. After obtaining the logistic regres-
sion equations, the method defines a Value of an Acceptable Risk
Level (VARL), which is given by a suggested probability p0 and is cal-
culated using the logistic regression coefficients. For measure val-
ues over VARL, the risk of a poor-quality of models is higher than
the p0. However, the need for a binary variable is a limitation, as
is the definition of p0, which is defined by the engineer arbitrarily.

Other techniques are adapted to threshold extraction. That is
the case of ROC curves, typically used for making decisions about
diagnostics in radiology to distinguish between healthy and ill sub-
jects in clinical medicine. Some authors used ROC curves for
threshold extraction, such as Shatnawi [50] and Catal et al.[15].
To plot a ROC curve, a binary and ordinal categorization is needed.
The curve is constructed with pair values of sensitivity, 1-specificity
and we have to select the pair which minimizes false-positives and
false-negatives at the same time. The main limitation of this tech-
nique is also the required binary variable.

Benlarbi [6] investigates the relation of measure threshold and
software failures for a set of measures using a linear regression.
Two error probability models are compared, with and without
threshold. For the model with threshold, measure values below
the threshold obtain a zero probability of error. However, no
empirical evidence supports the model with threshold. On the
other hand, Yoon et al. [55] used the K-means cluster algorithm
to identify thresholds. Threshold values can be identified by obser-
vations that appear either in isolated clusters or far away from
other observations within the same cluster. However, the algo-
rithm requires a parameter that affects the performance and the
accuracy of the results. The identification of thresholds, it must
also be remembered, is manual; in general, the input parameters
influence the final results.

Herbold et al. [24] used a machine learning algorithm to define
an approach for the calculation of the threshold. This utilizes the
learning of axis-aligned d-dimensional rectangles for the calcula-
tion. This methodology, however, produces a binary classification
and can therefore only differentiate between good and bad; further
shades of gray are not possible. Ferreira et al. [20] proposed the
extraction of thresholds derived by analyzing the statistical prop-
erties of the data obtained from a large collection of open-source
programs developed in Java, thereby identifying the values most
commonly used in practice. However, the effectiveness of the tech-
nique depends directly on the sample size. Finally, Rosenberg [44]
uses a simple histogram to demonstrate prevailing and extreme
values, but there is no clear evidence of how these values are asso-
ciated with error-probability.

The research presented in this paper focuses on understandabil-
ity and modifiability of business process models. All the methods
discussed, which are summarized in Table 1, require the dependent
variable to be binary. This is a major problem for defining thresh-
olds of process model understanding, which is typically measured
on an ordinal or interval level. Moreover, most of the analyzed
measures which were applied on software or another field, such
as business process models, have no threshold definition. In this
work, we avoid the loss of information by applying a new tech-
nique for threshold extraction based on ANOVA tests. We use some
of the techniques mentioned (Bender method [5] and ROC curves)
for secondary purposes, as validation of extracted thresholds. This
is detailed in the following sections.
3. Experimental settings

The empirical definition of thresholds requires the availability
of data. We therefore carried out a controlled experiment on
understandability and modifiability, in order to obtain threshold
values for gateway complexity measures. Using the GQM template
for goal definition [3], the experiment goal can be defined as
follows:

‘‘Analyzing business process models for the purpose of evalu-
ating process model understanding and modification with
respect to their gateway complexity from the point of view
of process model designers in the context of undergraduate
computer engineering students’’.

An overview of the experiment design is presented in Fig. 2 and
the description of it (based on [54]) it is set out in detail below.
3.1. Planning

The planning was carried out according to the following steps.
The experiment addresses a real problem when analyzing gate-
way complexity of business process models, comparing measure-
ment results with obtained thresholds, and discovering what
parts of models should be redesigned. The experimental material
is composed of models without realistic label names, however.
This is an important requirement for neutralizing a potential ef-
fect of varying domain knowledge among subjects [41]. The
selection of subjects has been done on the basis of convenience.
In the experiment, the subjects were students of the 4th year of
Computer Science degree at University of Castilla La Mancha
(Spain). They had knowledge of process modeling but they did
not know the specific model notation, BPMN. This being so, a
seminar about the notation was carried out previously and the
subjects were trained to perform the experiment successfully.
With regard to variable selection, the independent variables
are the aforementioned structural measures: CFC, GM, GH, AGD,
MGD and TNG. The dependent variables are the efficiency of
understandability and modifiability which were obtained by cal-
culating four main base measures on experimental data:

� Understandability/Modifiability time: total of seconds needed
for finishing the whole questions in a specific model.
� Understandability/Modifiability correct answers: total number

of correct answers. For understandability, each model has four
yes/no questions about the model, and for modifiability, three
exercises that consist in the implementation of some modifica-
tions on the model.
� Understandability/Modifiability efficiency = correct answers /

time.
� Personal assessment of complexity: a subjective answer about

how difficult facing the exercises in each model was. Subjects
could indicate between 1 (very easy) and 5 (very difficult).

Regarding the instrumentation step of the experiment plan-
ning stage, the objects were 10 BPMN models, a number of mod-
els chosen by us in an effort to avoid fatigue effects. An excerpt of
the experimental material is included in Appendix A. To select a
representative subset, for each model we considered different val-
ues of gateway complexity measures. Measure values are the
lowest for the first model and are highest for the tenth model
and they vary (see Table 2) in small increments across the ten
models. The models were therefore specifically designed for this
experiment, in order to include enough variability in the measure
values. Model 1 has the lowest values of the measures and Model
10 the highest. To avoid potential bias from different levels of
complexity that may come about as a result of varying lengths
of labels in the model elements, abstract labels were used.

The hypotheses of the experiment are the following:H0.1
When asking understandability questions there are no significant
differences in efficiency depending on the values of the gateway
complexity measures.



Fig. 2. Overview of the experimental design.

Table 2
Gateway measure values in experimental material.

Model CFC GM GH AGD MGD TNG

1 8 2 0 3 3 7
2 13 6 0.62 3.67 4 9
3 22 6 0.79 3.83 5 12
4 24 12 0.84 3.85 6 13
5 30 14 0.86 3.86 6 14
6 31 15 0.86 3.88 7 16
7 37 15 0.92 4.06 7 18
8 44 18 0.92 4.16 8 19
9 51 20 0.94 4.18 9 22
10 63 25 0.94 4.22 9 23

Mean 32.3 13.3 0.76 3.87 6.4 15.3
Std. deviation 16.98 7.04 0.28 0.35 2.01 5.29

Fig. 3. Distribution of the experimental tasks of the experiment carried out in
Spain.
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Alternative hypothesis, H1.1. When asking understandability
questions there are significant differences in efficiency depending
on the values of the gateway complexity measures.
H0.2. When carrying out modifiability exercises there are no sig-
nificant differences in efficiency depending on the values of the
gateway complexity measures.
Alternative hypothesis, H1.2. When carrying out modifiability
exercises there are significant differences in efficiency depending
on the values of the gateway complexity measures.

The hypotheses have been stated according to the statistical test
which will be applied (ANOVA). For H0.1, in particular, we would
like to check that, the higher the gateway complexity measure val-
ues are, the lower the efficiency of understandability will be; or, for
H0.2, the higher the gateway complexity measure values are, the
lower the efficiency of modifiability will be.

In the experimental design step, we had 6 independent vari-
ables, so it might be thought that a factorial design should be used.
That would have been impractical, however, because we would
need n6 different cases (n being the levels we decided for the inde-
pendent variables). This led us to decide to consider only ten mod-
els and to try to cover a wide range of measure values. These
models were not based on real cases; activities are labeled with ab-
stract names in order to avoid any specific domain difficulty, which
is not taken into account in this experiment. For each model, there
were four questions about understandability and three exercises
about modifiability, with a similar complexity level. Separate runs
were conducted to tackle understandability and modifiability tasks
separately, the aim being to mitigate fatigue and learning effects.
The order of the models was different and random for each subject,
to avoid learning effects. Fig. 3 summarizes the different runs. Figs.
A1 and A2 show an extraction of the experimental material in
Appendix A.

3.2. Operation

The operational phase was divided into three steps: prepara-
tion, execution and data validation. The preparation step defines
the temporal experiment settings. The experiment was done in
March 2011. As is shown in Fig. 3, this experiment and the training
took place on three different days: on the first day, a BPMN tutorial
was given and some examples similar to experimental assign-
ments were solved. On the second day, after the subjects had ac-
quired this new knowledge, the understandability part of the
experiment was done and the modifiability run was carried out
on the third day. In the execution step, the subjects were given
the 10 models in a random order and we explained how to face
the tests. As we had calculated approximately in a pilot experi-
ment, about 20 min were needed to finish the understandability
part and 40 min were required for the modifiability part. Time
doing exercises was measured strictly with a chronometer and
each subject stopped the time counter when they had a question.
Once the data was collected, we checked if the tests had been com-
pleted correctly and we discarded the cases with missing answers;
this is the data validation step. We thus considered 28 of the 29
total subjects for the first understandability run and 25 of 27 for
the modifiability run.

4. Results

In this section, experimental data gathered in the experiment
are used to obtain thresholds for the gateway complexity mea-
sures. First of all, statistical tests were applied and then the re-
sults were analyzed. Details of this are given in the next two
subsections.
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4.1. Hypotheses testing

Firstly, we checked the hypotheses, the main idea being to dem-
onstrate significant differences in efficiency of understandability/
modifiability, taking into account the gateway complexity mea-
sures. A suitable statistical test for demonstrating differences be-
tween value groups is ANOVA [28]. This test proves whether or
not the means of several groups are all equal. In our case each
model was treated as a group, because there were different mea-
sure values for each model, and the purpose of ANOVA test is to de-
tect differences in understandability or modifiability between
models. In other words, there were 10 different values (ten varia-
tions) for each measure (Table 2), which divides the dataset in 10
models or groups. By using ANOVA we want to find significant
jumps in efficiency between two consecutive groups; that is to
say, when a small change in measure values means an important
change in efficiency values.

To do all this, our method is to compare the understandability/
modifiability efficiency between models or ‘‘groups’’, as they were
called in ANOVA tests, selecting the groups with significant differ-
ences. For example, let us imagine the following situation: we start
from the idea that group 1 (model 1) has the lowest measure val-
ues and group 10 (model 10) the highest measure values. Between
model 1 and model 10 there are 8 other models with intermediate
measure values. The ANOVA test between group 1 and group 2
indicate that there is no significant difference in efficiency, which
means that the variation of measure values does not produce any
significant differences in efficiency. However, the ANOVA test be-
tween group 6 and 7 indicates that there is a strong difference in
efficiency, which seems to indicate the existence of a threshold be-
tween the measure values of groups 6 and 7. Selecting, for exam-
ple, the CFC measure (CFC is 31 in model 6 and CFC is 37 in
model 7), the ANOVA test indicates to us that a threshold value
for understandability/modifiability efficiency is between 31 and
37. The description of the algorithm for threshold extraction is de-
picted in Algorithm 1.

4.1.1. Application of Algorithm 1
The execution of Algorithm 1 implies checking the normality

and homogeneity of variances of the data. The hypotheses for both
statistical tests are the following:

H0.3. The dependent variable follows a normal distribution.

H0.4. The dependent variable satisfies the homogeneity of
variances.

The results depicted in Tables 3 and 4 indicate that all the
groups follow a normal distribution, and that in some situations,
the homogeneity of variances is satisfied; in those cases, the ANO-
VA test is applied. In Table 4, in the column of ‘‘Levene’s test’’, the
underlined cases mean that the homogeneity of variances is satis-
fied and, in the column of ‘‘ANOVA test’’, the underlined ones mean
that there are significant differences between the specific two
groups. In the application of Algorithm 1 to the data, the six mea-
sures are treated as one component because the Principal Compo-
nents Analysis (PCA) results indicated that all the measures are
included in the same component.
Table 3
Kolmogorov–Smirnov test results for checking the normality of the data.

Normality g1 g2 g3 g4 g5

U
Z 0.442 0.544 0.743 0.545 0.7
sig 0.990 0.929 0.638 0.928 0.6

M
Z 0.602 0.577 0.422 0.741 0.5
sig 0.862 0.893 0.994 0.642 0.8
Algorithm 1. Threshold calculation.

Input:
nm is the number of models.
ns is the number of subjects.
m[] is a vector of the measure values, where each element
m[i] corresponds to the model i and it has the following 6-
tuple structure:
m[i]={CFCi, GMi, GHi, AGDi, MGDi, TNGi}

where i 2 [1, nm].
ef[] is a bi-dimensional vector of the efficiency values where

each element ef[i, j] corresponds to the model i and to
the subject j, with i 2 [1, nm] and j 2 [1, ns].

Output:
lt is a list with the obtained thresholds, where each element
lt[k] corresponds to a set of thresholds in the way of the
following 6-tuple structure:
t[k]={tCFCk, tGMk, tGHk, tAGDk, tMGDk, tTNGk}

where k 2 [1, nm-1].�
⁄
nm-1 is the maximum number of thresholds among nm

models
NOTE: thresholds are analyzed for each pair of consecutive

models m[i] vs m[i+1].
Algorithm:
‘ Initialization

g[] is an intermediate vector, where each element g[i] is to
store a full row of ef[] (efficiency values for all the
subjects and one model)

for i := 1 to nm

g[i] := {ef[i, 1], . . . , ef[i, ns]}

next i

‘ Iteration comparing each pair of consecutive

models i and i+1

i := 1

while i < nm

normality1 := kolmogorovSmirnov(g[i])

normality2 := kolmogorovSmirnov(g[i+1])

varianceHomog = levene(g[i], g[i+1])

if (normality1 & normality2 & varianceHomog) then

difference = ANOVA(g[i], g[i+1])

if difference then‘ a set of thresholds is

detected

Add m[i+1] to lt;

end-if

end-if

i = i + 1

end-while

According to the principal hypothesis, threshold values for process
models measures were extracted and shown in Table 5. Some mea-
sures obtained two, three or four significant differences in efficiency
between groups, and therefore the number of threshold values is
changeable. For example, for the CFC measure 4, different thresh-
g6 g7 g8 g9 g10

22 0.432 0.757 0.564 0.989 0.603
74 0.992 0.615 0.908 0.282 0.860

99 0.536 0.564 0.508 0.493 0.522
66 0.936 0.908 0.959 0.968 0.948



Table 4
Homogeneity of variances and ANOVA test results.

Understandability Modifiability

Levene’s test ANOVA test Levene’s test ANOVA test

Statistic Sig F Sig Statistic Sig F Sig

G1–G2 1.47 0.233 12.81 0.001 7.13 0.010 – –

G2–G3 0.05 0.82 5.688 0.021 2.68 0.108 17.67 0.000
G3–G4 0.006 0.941 2.375 0.129 9.72 0.003 – –

G4–G5 0.037 0.848 0.139 0.711 0.850 0.361 1.757 0.191

G5–G6 0.428 0.516 2.451 0.123 0.183 0.671 8.124 0.006
G6–G7 0.036 0.850 6.037 0.017 0.239 0.627 11,08 0.002
G7–G8 0.004 0.950 2.166 0.147 5.17 0.027 – –

G8–G9 1.65 0.204 51.73 0.000 4.68 0.035 – –

G9–G10 0.036 0.851 2.525 0.118 0.03 0.862 – –
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olds were obtained, because understandability efficiency was sig-
nificantly different when the measure was over 13, 22, 37 and 51.

In order to interpret the results of Table 5, they have to be com-
pleted with the correlation analysis about measures and under-
standability/modifiability efficiency, and the Spearman test was
used. All the correlation results were significant and Spearman
rho’s values are the following:

� Understandability efficiency and measures CFC, GM, GH, AGD,
MGD and TNG have correlation values of (�0.460, �0.452,
�0.358, �0.423, �0.447 and �0.458).
� Modifiability efficiency and measures CFC, GM, GH, AGD, MGD

and TNG have correlation values of (�0.238, �0.242, �0.260,
�0.238, �0.216 and �0.238).

Results show that there is an inverse relationship between
measures and understandability/modifiability efficiency, which
means that the higher the measure values are, the lower the effi-
ciency is. For example, as is shown in Table 5, when the CFC value
is 22, the model’s understandability efficiency begins to decline
significantly.
4.2. Identification of thresholds

From the results of the experiment we obtained threshold val-
ues for structural measures, which constitute alarms of poor-qual-
ity models, in terms of understandability and modifiability.

Each threshold measure value has associated linguistic labels
for a correct interpretation. Linguistic labels help in the assessment
and, based on the limitations of our capability of processing infor-
mation published, a number of between 3 and 7 labels is advised in
[34]. So we associated a linguistic label to each threshold value in
each measure, as is shown in Table 6. For example, the measure
CFC obtained 4 threshold values for understandability. These four
values divide the CFC variable domain in five different groups:
from 0 to 13, from 13 to 22, from 22 to 37, from 37 to 51 and from
51 to the infinite. The linguistic labels ‘‘fairly low’’, ‘‘low’’, ‘‘Med-
ium’’, ‘‘High’’ and ‘‘Fairly high’’ to these groups, respectively. Thus,
Table 5
A first approximation of threshold values for selected measures.

Understandability Modifiability

CFC 13, 22, 37, 51 22, 31, 37
GM 6, 15, 20 6, 15
GH 0.62, 0.79, 0.92, 0.94 0.79, 0.86, 0.92
AGD 3.67, 3.83, 4.06, 4.18 3.83, 3.88, 4.06
MGD 4, 5, 7, 9 5, 7
TNG 9, 12, 18, 22 12, 16, 18
if the measure CFC is 10, a direct evaluation is given as a ‘‘fairly low
measure value’’. Unfortunately, not all the measures obtain the
same number of thresholds and the number of groups in which
is divided the measure domain is different. That is the case, for
example, of CFC and modifiability. With three thresholds, 4 groups
are created and therefore one linguistic label should be eliminated.
As the first threshold for CFC is 22, in contrast to understandability
thresholds, we believed that it was more suitable to eliminate the
label ‘‘fairly low’’.

In Table 6, thresholds obtained for each measure are also spec-
ified. The set of measures has a different number of thresholds,
depending on understandability and modifiability experiments
and the results of Algorithm 1. For example, regarding the CFC
measure, if a model has a CFC value equal to 36, it is considered
as a high value, which may compromise the understandability of
the model. These threshold values are considered useful because
modelers can easily gauge the measure values for the models
and use the threshold values to avoid obtaining high-risk designs.

4.3. Definition of the Gateway Complexity Indicator (GCI)

The results presented in the previous section can benefit from
having a single indicator to summarize them. The integration of
the six measures in an indicator gives us the possibility of obtain-
ing a unified value with a unified assessment about understand-
ability and modifiability. This indicator could be used as a
complementary mechanism to that provided by the six measures,
thereby giving a global assessment.

However, establishing the relationship between the measures is
no small task. The proposed indicator is calculated by a weighted
sum of all the measures. Weighted sums have been used in other dis-
ciplines to reduce a multidimensional problem to a uni-dimensional
one. The basic idea is to combine several lower-level measures to
build a single, upper-level measure that may quantify different as-
pects of a given attribute at the same time [35]. Firstly, it is important
to point out that the six measures selected to build the GCI have been
demonstrated to be theoretically valid. CFC was validated in [11]
according to Weyuker’s [53] properties; GM, GH, AGD, MGD were
validated in [30] according to the Zuse method [57]; and finally,
TNG measure was validated in [42] according to Briand’s theoretical
framework [8]. In addition, according to the research of Poels and
Dedene [40] and Fenton [19], all the measures have a ratio scale,
and measures can therefore be aggregated by using weights to build
the GCI indicator whose scale is also ratio. However, defining the
weights associated with each measure is a difficult task, and there
are different ways of facing this [35]. A first method consists of defin-
ing weights according to measurement goals. The same measurer
may choose different weights under different circumstances. An-
other way to carry out the definition is by means of subjective



Table 6
Threshold values and linguistic labels for gateway complexity measures.

Understandability Modifiability Linguistic label

Control-Flow Complexity (CFC)
CFC 6 13 – Fairly low measure value or fairly easy to understand/modify
13 < CFC 6 22 CFC 6 22 Low measure value or easy to understand/modify
22 < CFC 6 37 22 < CFC 6 31 Medium measure value or moderately difficult to understand/modify
37 < CFC 6 51 31 < CFC 6 37 High measure value or difficult to understand/modify
CFC > 51 37 < CFC Fairly high measure value or fairly difficult to understand/modify

Gateway Mismatch (GM)
– – Fairly low measure value or fairly easy to understand/modify
GM 6 6 GM 6 6 Low measure value or easy to understand/modify
6 < GM 6 15 6 < GM 6 15 Medium measure value or moderately difficult to understand/modify
15 < GM 6 20 15 6 GM High measure value or difficult to understand/modify
GM > 20 – Fairly high measure value or fairly difficult to understand/modify

Gateway Heterogeneity (GH)
GH 6 0.62 – Fairly low measure value or fairly easy to understand/modify
0.62 < GH 6 0.79 GH 6 0.79 Low measure value or easy to understand/modify
0,79 < GH 6 0.92 0.79 < GH 6 0.86 Medium measure value or moderately difficult to understand/modify
0.92 < GH 6 0.94 0.86 < GH 6 0.92 High measure value or difficult to understand/modify
0.94 < GH 0.92 < GH Fairly high measure value or fairly difficult to understand/modify

Average Gateway Degree (AGD)
AGD 6 3.67 – Fairly low measure value or fairly easy to understand/modify
3.67 < AGD 6 3.83 AGD 6 3.83 Low measure value or easy to understand/modify
3.83 < AGD 6 4.06 3.83 < AGD 6 3.88 Medium measure value or moderately difficult to understand/modify
4.06 < AGD 6 4.18 3.88 < AGD 6 4.06 High measure value or difficult to understand/modify
4.18 < AGD 4.06 < AGD Fairly high measure value or fairly difficult to understand/modify

Max. Gateway Degree (MGD)
MGD 6 4 – Fairly low measure value or fairly easy to understand/modify
4 < MGD 6 5 MGD 6 5 Low measure value or easy to understand/modify
5 < MGD 6 7 5 < MGD 6 7 Medium measure value or moderately difficult to understand/modify
7 < MGD 6 9 7 < MGD High measure value or difficult to understand/modify
9 < MGD – Fairly high measure value or fairly difficult to understand/modify

Total Number of Gateways (TNG)
TNG 6 9 – Fairly low measure value or fairly easy to understand/modify
9 < TNG 6 12 TNG 6 12 Low measure value or easy to understand/modify
12 < TNG 6 18 12 < TNG 6 16 Medium measure value or moderately difficult to understand/modify
18 < TNG 6 22 16 < TNG 6 18 High measure value or difficult to understand/modify
22 < TNG 18 < TNG Fairly high measure value or fairly difficult to understand/modify

Table 7
PCA results for gateway complexity measures.

Measure Components extracted Components scores (regression)

CFC 0.962 0.176
GM 0.970 0.177
GH 0.870 0.159
AGD 0.953 0.175
MGD 0.985 0.180
TNG 0.980 0.179
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weights based on theoretical or experience-based considerations
and, finally, default weights can be used; typically, these may weigh
all the measures equally. Using linear regression models may solve
most of the problems with weighted sums.

To achieve this, the Factor Analysis, specifically a Principal Com-
ponents Analysis (PCA), was conducted, using Varimax Rotation. As
a result, one component was returned which groups all the mea-
sures. As can be observed in Table 7, the PCA offers component
scores which are typically used to value the relative importance
of each measure in the component. By combining each measure
and their corresponding coefficients (components scores), it is pos-
sible to define a linear equation as a measurement approach for
GCI. Since there are several methods for estimating the component
scores, we have chosen the most widely-used one- the regression
method [9].

As a result, the proposed formula for GCI is the following:

GCI ¼ 0:176 � CFCþ 0:177 � GMþ 0:159 � GHþ 0:175 � AGD

þ 0:180 �MGDþ 0:179 � TNG

Table 8 displays different threshold values for the GCI indicator,
obtained with Algorithm 1. This information can be used to give an
initial interpretation of the understandability and/or modifiability
of a business process model. However, understandability and mod-
ifiability are fuzzy and subjective and it is difficult to define them.
In this sense, we believe it is useful to associate probabilities for
considering the model to be suitable in terms of understandability
and modifiability. One method for associating probabilities to
thresholds was proposed by Bender.
The application of the Bender method [5] with experimental
data collection presented in this article implies the definition of a
binary variable, because of the logistic regression analysis. The
dichotomized process is based on the idea of putting a 0 value
when efficiency is higher than the median and the value of 1 when
it is lower [45]. Despite the loss of information in the dichotomiza-
tion (explained in the Background Section), we applied this tech-
nique with the main purpose of obtaining different probabilities
in thresholds.

Table 9 specifies general probabilities for GCI. For example, if
the GCI value is equal to 6.72, there is a 30% of probability of con-
sidering the model as non-understandable. The p-value column
indicates probabilities (from zero to one) and understandability
and modifiability columns indicate the thresholds for each quality
attribute. It could also be interesting to know exactly the probabil-
ities of the thresholds indicated in Table 8. This information is
summarized in Table 10. This table can be interpreted as follows:
if the model has a GCI value around 8.77, the model has a probabil-



Table 8
Thresholds for Gateway Complexity Indicator.

Understandability Modifiability Linguistic label

GCI < 6.42 Fairly easy to understand/modify
6.422 < GCI 6 8.77 GCI < 8.77 Easy to understand/modify
8.77 < GCI 6 14.5 8.77 < GCI 6 13.05 Moderately difficult to understand/

modify
14.5 < GCI 6 18.9 13.05 < GCI 6 14.5 Difficult to understand/modify
18.9 < GCI 14.5 < GCI Fairly difficult to understand/

modify

Table 9
Associated probabilities to thresholds for GCI.

p0 Gateway Complexity Indicator

Understandability Modifiability

0.2 2.93 0
0.3 6.72 2.17
0.4 9.83 7.69
0.5 12.69 12.76
0.6 15.55 17.83
0.7 18.66 23.35
0.8 22.45 30.09
0.9 28.16 40.23

Table 10
Thresholds and related probabilities for GCI.

Understandability Modifiability

Threshold Probability (%) Threshold Probability (%)

6.42 29.1 8.77 42.08
8.77 36.4 13.05 50.57

14.05 54.8 14.5 53.46
18.9 70.7 – –

Fig. 4. Description of the replication carried out in Berlin.
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ity of 36.4% of being difficult to understand, or if the model is
around 18.9, the model is difficult with 70.7% probability. The
Bender method [5] offers complementary information about the
thresholds obtained with ANOVA tests, and can clarify the assess-
ment tasks.

5. Empirical validation of thresholds

In this section we present findings from applying a cross-valida-
tion to the thresholds presented in previous sections. In this case
two techniques have been selected for validation purposes, such
as recall, precision and accuracy measures (Section 5.1) and ROC
curves (Section 5.2).

To develop the cross-validation, a replication of the experiment
was done. The experiment and the replication are similar, but only
differ in subjects. These new subjects are students of the Master of
Information Systems and Master of Economics and Management
Science, in the Humboldt University of Berlin (Germany). The rep-
lication was developed in July 2011 and it was divided in two runs,
as described in Fig. 4. In this case subjects did not need any training
day to learn BPMN, because they already had enough knowledge to
carry out the experiment.

5.1. Validation through recall, precision and accuracy measures

The first step for the cross-validation of thresholds is based on
ideas from the information retrieval field. In this field, the measure
called ‘precision’ is defined as the ratio of true positives to the sum
of true positives and false positives [36]. True positives are the
number of times thresholds correctly classify a model as under-
standable, and false positives are the number of times thresholds
erroneously classify a model as understandable. In the same con-
text, the ‘recall’ measure is defined as the true positives to the
sum of true positives and false negatives [36]. Finally, the ‘accu-
racy’ measure is a widespread measure of effectiveness, to evaluate
a classifier’s performance [33] and it is calculated as the sum of
true positives and true negatives to the sum of true and false pos-
itives and true and false negatives. Precision, recall and accuracy
are measures that are appropriate for computing the effectiveness
of search results [2].

For calculations, we have to consider a desirable classification
and an actual one. The desirable classification is defined by the
application of thresholds; this is based on the internal quality of
business process models. This classification is depicted in Table 6
and is defined with 5 levels for understandability and 4 levels for
modifiability, depending on the number of thresholds extracted
in previous sections (fairly low, low, medium, high, and fairly
high). For example, in the experiment material, model number 3
obtains low gateway complexity values or it is considered as easy
to understand, in a desirable way. This means that we expect any
model with the same measurement values to be easy to under-
stand by a specific subject.

The actual classification is based on the efficiency obtained by
subjects in the experiment replica, which means external quality
of business process models. Efficiency values classified each case
in five or four groups (depending on understandability or modifi-
ability) based on the percentile values. That means, for under-
standability efficiency, the percentile of 20% classified cases on
one group with the label of fairly low, and so on with the 40%,
60% and 80% and labels of low, medium, high and fairly high,
while for modifiability we used the percentile of the 25%, 50%
or median, and 75%. For example, if a specific subject obtains a
low efficiency in understandability tasks in a business process
model, the actual classification for that model is difficult to
understand.

Let us suppose that the desire classification indicates that a spe-
cific model obtains high measure values or it is considered as dif-
ficult to understand/modify. If the actual classification indicates
that actually the measure values are high, the prediction was right.

We considered as a true positive the case in which a structural
measure predicts the evaluation of the quality of a specific model
as fairly understandable and, finally, the understandability effi-
ciency value of a subject which is analyzing it in the replication
experiment is higher than the median. The definition of true posi-
tives/negatives and false positives/negatives is displayed in Fig. 5.

The precision, recall and accuracy results for the threshold val-
idation are shown in Figs. 6 and 7. These figures are used to check
whether the 10 business process models of the experimental mate-
rial classified as fairly low/low/medium/high/fairly high according
to obtained thresholds are well-classified, in contrast to the classi-
fication based on the efficiency value of understandability/modifi-
ability obtained by each subject in the replica.

As shown in Figs. 6 and 7, we obtained better results for modi-
fiability, due to the fact that the highest accuracy for modifiability



 

Fig. 5. Definition of the true positive/negative and false positive/negative.

Fig. 6. Precision, recall and accuracy for extracted thresholds for understandability. Fig. 7. Precision, recall and accuracy for extracted thresholds for modifiability.

Table 11
AUC values for ROC curves.

Measures Understandability Modifiability

AUC Sig AUC Sig

CFC 0.691 0.049 0.65 0.05
GM 0.694 0.049 0.647 0.052
GH 0.698 0.049 0.643 0.052
AGD 0.691 0.049 0.650 0.052
MGD 0.693 0.049 0.691 0.049
TNG 0.691 0.049 0.650 0.052
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is in the fourth tier, while the highest for understandability is in
the second tier. Recall has also better results for modifiability,
due to the fact that all the results are in the second tier, while
the results for understandability are on the first one. Precision
has similar results in both charts.

Analyzing the charts, we conclude that the best-classified cases
belong to medium and fairly low groups for understandability and
low and fairly high ones for modifiability. This leads us to affirm
that thresholds can be useful for classifying models in terms of
the level of understandability and modifiability, due to the high
values of precision, recall and accuracy.
GCI 0.691 0.049 0.650 0.052
5.2. Validation through ROC curve analysis

While precision, recall and accuracy are suitable measures for
assessing how good a classifier is, other techniques can strengthen
the results. ROC curves provide a pure index of accuracy by demon-
strating the limits of a test’s ability to discriminate between alter-
native states (understandable/modifiable, non-understandable/
non-modifiable) [58]. For the application of ROC curves on our
experimental data, we need a categorical variable, which describes
whether the model is understandable/modifiable or not, and a con-
tinuous one, in this case, the set of measures. The final purpose of
this technique is to determine how good each measure is at classi-
fying models as understandable/modifiable or non-understand-
able/non-modifiable. In this case, the categories are not binary
because they are classified as fairly easy to understand/modify,
easy to understand/modify, moderately difficult to understand/
modify, high difficult to understand/modify, and fairly difficult to
understand/modify. This method calculates pairs of values as sen-
sitivity/1-specificity, where sensitivity is calculated in a similar
way to recall.

The test performance is assessed using the Area Under the
Curve (AUC) and it is widely-used as a measure of performance
of classification [22]. Although it is ranked between 1 and 0, an
AUC < 0.5 is considered no good, 0.5 < AUC < 0.7 is considered as
poor and only if AUC > 0.7 is it considered to be acceptable. The re-
sults obtained are shown in Table 11 and Fig. 8.

The most suitable result is one that provides an AUC higher or
equal to 0.7 with a significance value (p-value) higher or equal to
0.05. Although most results are near these values, not all respect
these conditions. We considered all significances as valid because
they are 0.052 or 0.049, which is very close to 0.05. As regards
AUC values, the ones which are about 0.691 (all for understand-
ability) are considered as acceptable. The rest of them, near 0.650
(all for modifiability), are considered to be poor, but they pass
the limit of 0.5 and therefore all the results are tolerable. Fig. 8
shows some examples of ROC curves that depicted curves superior
to the diagonal, which is a signal of good results. In conclusion, the
ROC curve results reveal that thresholds for business process mea-
sures are good classifiers of models.
6. Discussion

In this section we discuss the practical utility of thresholds and
the limitations of research presented here. Section 6.1 investigates
the implications of this work for research and practice and, finally,
Section 6.2 discusses threats to validity.
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Fig. 8. Example of ROC curves of some measures.
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6.1. Implications for research and practice

As stated in the introduction, the business process design ele-
ments related to gateway complexity are principally decision nodes
and input/output sequence flows of those nodes. Thus, we aim to
establish a more suitable use of these design elements, in order to
avoid risking the understandability/modifiability of the business
process model. We believe this brief guideline of using decision
nodes can be a help to novice modelers when modeling BP.

First of all, it is important to define the most suitable number
of decision nodes. Following the thresholds for the TNG measure,
the gateway complexity is high when the model has more than
18 decision nodes, and very high with more than 22. For this rea-
son, we establish the number of nodes as being between 18 and
22. But it is not only the number of decision nodes that increases
the complexity of the model; it is also the diversity of their types
(XOR, OR and AND). Following the CFC measure, OR-split nodes
create more mental states, a total of 2n � 1, which means that
the focus of reducing gateway complexity should be in this type
of decision nodes, while AND nodes imply a lower increase of
complexity for models. Since heterogeneity of decision nodes is
an important point in the evaluation of complexity, the thresh-
olds for the GH measure indicate to us that more than 10 XOR
decision nodes, 7 AND nodes or 4 OR nodes endanger the quality
of the model. Input/output sequence flows from decision nodes
are another key aspect in gateway complexity. Specifically, more
than 7 input/output sequence flows increase the complexity of
the model and more than 9 is not acceptable, due to the fact that
the modeler would take into account a very ‘‘difficult’’ number of
mental states. Finally, an important aspect in a good design is
about the number of output/input in split/join nodes. A good de-
sign has the same output sequence flows for splits and input se-
quence flows for joins. To be precise, if that difference is higher
than 15, the complexity could increase too much- higher than
20 is not appropriate.

All of this information can be summarized in the following set
of rules for business process modeling:

� Include no more than 18–22 decision nodes.
� Minimize the number of OR split nodes.
� Include no more than 10 XOR, 7 AND and 4 OR decision

nodes.
� Each decision node should have fewer than 7–9 input/out-

put sequence flows.
� A difference higher than 15–20 in the number of input/out-

put sequence flows between split/join nodes is not
acceptable.

These guidelines are a contribution to the previously-published
guidelines by Mendling [31], Becker [4], or Sánchez-González
[46,48] which include some advice about how to model a business
process without endangering its general quality. In our case we fo-
cus on gateway complexity, extending the information with vari-
ous recommendations.
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6.2. Threats to validity

The purpose of this section is to analyze the different threats to
the validity of the experiment and the replica, in particular the
conclusion and construct, as well as internal and external validity
[16]. We addressed these threats during the experiment design
or execution. In the following lines we outline the threats to the
experiment, and highlight some improvement to be carried out
as future work.

6.2.1. Threats to conclusion validity
The conclusion validity describes our ability to draw statisti-

cally-correct conclusions based on the measurements, or it may
be said to be the extent to which conclusions about the existence
of a statistical relationship between treatments and outcomes are
warranted. In the experiment, we consider convenient samples to
be: 60 values, 10 models and 53 subjects. Although subjects in
the experiment are limited in number, we believe that the sample
size is significant enough to allow us to check the main hypothesis
(through ANOVA tests) and to obtain conclusion validity. More-
over, the independent variables chosen (measures) in the experi-
ment are also sufficiently valid to draw a conclusion.

Other aspects can be considered as limitations in the validity of
the conclusion. We should point out, for instance, that the ques-
tions are answered using a pen and paper, and that the responsibil-
ity to indicate the time taken in answering depends on subjects.
These methods are sometimes not very accurate. However, conclu-
sion validity focuses mainly on the sample size, as was indicated in
[54].

6.2.2. Threats to construct validity
Construct validity is concerned with the relation between the-

ory and observation [54], which implies to check whether the rela-
tionship between cause and effect is casual or not. Some threats to
the construct validity are related to the design, and others have to
do with social factors. All of the subjects knew how to fill the ques-
tionnaires, because the experimental material included an exam-
ple. Moreover, we measured understandability and modifiability,
which are calculated by the measure of efficiency (dependent var-
iable). This measure is considered objective, because it reflects the
relationship between the time the subjects need to complete the
questions or exercises and the correct answers obtained in those
tasks. As regards social threats, it seemed to us that the subjects
tried to do a good job, knowing that they could increase their final
marks. All of these considerations lead us to provide objective mea-
surement of what in this empirical study we purported to measure.

6.2.3. Threats to internal validity
Internal validity is concerned with whether the effect measured

is because of changes caused by the researcher, or if it is due to
some other unknown cause. In our case, it would mean that there
are no significant differences in the efficiency of understandability
and modifiability when the business process model is structurally
more complex. A number of potential threats to internal validity
are listed below.

We have tackled different aspects that could threaten the inter-
nal validity of the study, such as: differences between subjects,
precision in the time values, learning effects, fatigue effects, persis-
tence effects, subject motivation and mortality.

With respect to differences between subjects, all the subjects cho-
sen had a similar knowledge of modeling, because all of them be-
long to the same level of their degree course. As far as precision in
the time values is concerned, a large clock was visible to everyone,
to show the time in a way that was the same for all the subjects.
Learning effects were avoided by randomly ordering the 10 differ-
ent models. Fatigue effects were mitigated by conducting the runs
of the experiments on different days. As regards subject motivation,
they were motivated by an assessment of the results they gave and
by the fact that they were given extra points towards their final
course marks. Finally, mortality is about the subjects who did not
complete the exercises correctly, and whose experiments should
be discarded. In our case, this occurred in the case of 3 of the 56
subjects; that is considered non-relevant for the study.
6.2.4. Threats to external validity
The external validity of a study describes the possibility of gen-

eralizing its results. The following threats to external validity were
identified; these could limit the realism of the experiment [51]:

� Materials and tasks used: we defined non-real business
process models with abstract labels, which are sometimes
more difficult to interpret. However, eliminating the influ-
ence of domain knowledge with neutral labels also pre-
vents the creation of a potential bias which could stem
from varying length of natural labels [32], thus affecting
the validity of the experiment. For this reason, abstract lev-
els were used.

� Subjects: the experiments were performed by students and
this might be seen as a hindrance to a generalization of the
results, as compared to the performance of professionals
with a strong background in business process modeling,
for example. It does not seem that students perform less
competently than professionals with respect to cognitive
tasks [41], however. Moreover, the particular students
involved in this research were finishing their degree (Spain)
or were master’s students (Germany), so it appears to us
that using students as subjects did not imply a serious
threat to external validity.

� Environment: the modifiability part required some parts of
the models to be entered or deleted using only a pen and
paper. This could sometimes be more difficult than using
a process modeling tool.

6.2.5. Checklist for evaluating the quality of the experiment
The last threats point to some disadvantages in obtaining valid

results. It is recognized, however, that the evaluation of the quality
of human-centric experiments is recognized as being a difficult and
imprecise task. Some researchers realized the need to analyze the
quality of experiments in an objective way. In [27], authors de-
scribed an attempt to develop a procedure for evaluating the qual-
ity of experiments by means of a quality checklist. This checklist is
classified into three groups:

� Questions on aims: the aims of our research are clearly sta-
ted for each experiment, specifying hypotheses in each
case.

� Questions on design, data collection and data analysis: the
sample size is correctly specified for each experiment, and
the main parts of the experiment design are described in
detail. After collecting data, these are processed with statis-
tical techniques, obtaining objective conclusions. Limita-
tions and experimenter bias are described, so the reader
can be made aware of the scope of the experiments.

� Questions on study outcome: the results are described,
specifying thresholds for each measure. These threshold
values are described in more detail in subsequent sections.

Following this quality checklist for analyzing the quality of the
experimental design presented here, it is possible to establish if the
understandability and modifiability experiment and replication are
well-designed.
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7. Supporting tool for measurement assessment

Findings reported in this research have implications in business
process modeling. Derived thresholds guide the modelers about
what parts should be redesigned if we are to avoid endangering
the understandability or modifiability of models. A previously-
developed tool, named MT-BPMN (Measurement Tool for BPMN
models) was enhanced for use in supporting measurement assess-
ment, giving some advice to the modeler about how to redesign the
model. In addition, this tool was used to help in the experimental
process.

MT-BPMN has been developed in Java (Eclipse platform) and it
can load different types of business process models in serialized
formats. The main two functionalities of this tool are: to calculate
measures on business process models represented in BPMN nota-
tion and to evaluate these measurement results through thresholds
analysis. Consequently, MT-BPMN can serve as a guide to BPMN
modelers in improving the general quality of the models. The main
menu of the tool is organized as follows:
Fig. 9. Tool for measurem

Fig. 10. Representation of an ind
� Project viewer, to load different measurement projects, which
resume some measurement activities performed in the past.
� New evaluation (see Fig. 9), which sets out the measurement

results of a specific model. As can be seen in the example
shown on the left-hand side, the model was developed with
Bizagi 1.6.0. Within this functionality, various other tabs are
included for different purposes: the first tab shows the mea-
surement results, while the second tab, graphic representation
of measures, represents the measurement results in different
charts: bar, line, areas, kiviat and sectors. Indicators can also
be represented in meter and thermometer charts. These charts
provide the user with the advantage of quickly analyzing the
quality level of models. This is shown in Fig. 10. Finally, the
tab modeling tips show the different advice for improving the
model according to measurement results. This tab is shown
in Fig. 11.
� Compare results tab is used to compare measurement results of

two models, to select the best one. This option is especially use-
ful for comparing two versions of the same process.
ent BPMN models.

icator using a meter chart.



Fig. 11. Modeling tips in tool for measurement BPMN models.

Model 1

(A) Answer the following questions about the model, choosing the correct option
YES/NO:

STARTING TIME (indicate hh:mm:ss, e.g. 15:01:30s):___hh/___mm/___ss
1. Is it possible to execute activity C without having previously executed activity A?

YES/NO

2. Is it possible to execute activity K without having previously executed activity J?
YES/NO

3. Is it possible to execute activity E without having previously executed activity X?
YES/NO

4. Is it possible to complete the process execution without executing activity HH?
YES/NO

FINISHING TIME (indicate hh:mm:ss, p.e 15:01:30s):___hh/___mm/___ss

(B) What, in your opinion, is the complexity of the business process model?

Fairly simple A bit simple Medium Fairly complex Very complex

Fig. A1. Example of the material of the understandability experiment.
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� Define new measures, to include new measures in the database.
After including a new measure, it will be calculated in the next
measurement application.
� Define new modeling tips is a special tab for including modeling

tips associated with thresholds. These thresholds can be intro-
duced previously in the database or can be introduced at that
particular point in time.
� Configuration tool is an option which can configure the tool,

extending it so it can load more input formats. To achieve this,
users must specify the XML labels which represent each one of
the elements of BPMN.

MT-BPMN offers a straightforward way of detecting poor-qual-
ity structures in BPMN models and it advises the modeler about
how to correct them. Definition of thresholds as a decision-making
technique is heavily supported by this tool and it is an automatic
innovative way of improving business processes at the design
stage.

8. Conclusions and future work

In this paper a set of thresholds for business process model
measures have been proposed, for the assessment of the level of
understandability and modifiability from the perspective of gate-
way complexity. A controlled experiment with two runs (one for
understandability and another for modifiability) was designed
and carried out by pre-graduates in a Computer Science degree,
to define threshold values theoretically through the application
Mode

(A) Apply the following modifications, addin
the model, and changing the position of 
modification is applied to the original m
previous modification activities.

STARTING TIME (indicate hh:mm:ss, e.g. 15:01
1. Modify the model to execute the sequence of a

or Q->CC

2. Modify the model to execute the sequence of a

3. Modify the model to execute activities B and T
previously.

FINISHING TIME (indicate hh:mm:ss, p.e 15:01

(B) What, in your opinion, is the complexity

Fairly simple A bit simple Medium

Fig. A2. Example of the material of th
of ANOVA tests. These thresholds were validated through a replica-
tion of the experiment, performed by postgraduate Master stu-
dents. This validation was based on the estimation of precision,
recall and accuracy measures and, finally, by the calculation of
ROC curves. The results of the validation tasks revealed that
thresholds classified business process models at the specific level
of understandability and modifiability, obtaining better results
for modifiability and concluding that these thresholds were good
and useful for decision-making. Moreover, thresholds for gateway
complexity measures are used to define some advice for novice
modelers. This advice indicates how to design a model, taking into
account the number and nature of the decision nodes.

As a complementary added value of research we have also pre-
sented the MT-BPMN tool, with which it is possible to apply a set of
measures on BPMN models and assess measurement results
through the threshold analysis. After detecting what measures ob-
tain bad results, this tool advises the modeler about what parts
should be redesigned.

For future work we propose to validate threshold values with
more experimental data, in order to strengthen the obtained re-
sults. Moreover, quality for business process is a very abstract term
and its definition is no light task. Based on this idea, we propose to
analyze business process models from other perspectives besides
those already studied (understandability and modifiability). Other
quality characteristics should be supported by measures and
thresholds, which constitute indicators for quality assessment. Fi-
nally, a framework for continuous business process model improve-
l 2

g, removing or modifying the gateways in 
certain activities if it is necessary. Each 
odel and not to the model modified in 

:30s):___hh/___mm/___ss
ctivities L->K->FF or G->II->BB or j->P->EE 

ctivities AA->M and E->O in parallel.

 in parallel if activity N has been executed 

:30s):___hh/___mm/___ss

 of the business process model?

 A bit complex Fairly complex

e understandability experiment.
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ment should be defined, to prevent incorrect or unexpected execu-
tion of business processes in the organization.
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Appendix A. Experimental material

An extract of the experimental material for the understandabil-
ity and modifiability experiments is shown. Fig. A1 shows an ex-
tract of the understandability experiment and Fig. A2 about the
modifiability experiment.
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